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STABILITY OF THE LENSLIKE LIQUID THICKENING
(THE DROP) ON A SOLID SUBSTRATE

Valéry G. Babak
A. Nesmeyanov Institute of Organoelement Compounds,
Russian Academy of Sciences, Moscow, Russian Federation

The quasi equilibrium of a liquid lens or a liquid drop on a solid substrate is con-
sidered on the basis of the thermodynamics of microscopic thin liquid films. Both
contact angles, corresponding to the membrane model and to the finite thickness
layer convention of the film, have been derived as a function of the disjoining press-
ure isotherm. The analytical expressions for the line tension terms have been
obtained, and the criterion for the stability of a liquid drop on a solid substrate
has been proposed.

Keywords: Contact angle; Contact line; Line tension; Wetting; Spreading

INTRODUCTION

The thermodynamics of the three-phase system consisting of a small
wetting liquid drop (phase a) in contact with a solid substrate inside
a fluid phase b (Figure 1) represents the background for the descrip-
tion of wetting phenomena. The mechanical equilibrium of this system
is commonly described by the modified Young equation,

cabcos h ¼ csa � csb þ
j
rd

; ð1Þ

where cab; csa; and csb are the interfacial tensions of the corresponding
interfaces; rd is the radius of the three phase contact line; h is the
contact angle; and j is the tension acting along the contact line.
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The experimental estimation of the line tension term, j, may be
obtained from the dependence of the contact angle, h, on the radius,
rd, of the contact line [1�6]. The contact angle h depends on the thick-
ness, hf, of the wetting layer in the vicinity of the drop that is used to
describe the adsorption effects on solid substrates and to characterize
the surface forces (disjoining pressure) acting between solid and liquid
phases (Figure 2) [7]. In two extreme wetting�dewetting experimental
situations represented schematically as the left and the right sides of
the drop, these contact angles are designated as advancing ha and

FIGURE 1 The closed thermodynamic system, including a wetting liquid
drop (the phase a) on a solid substrate inside a fluid phase b (for explanation
see the text).

FIGURE 2 Wetting liquid layer thickness in comparison with the shape of
the disjoining pressure isotherm, PðhÞ.
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receding hr contact angles. So, the contact angle measurements pro-
vide us with precious information concerning the surface forces and
the structure of wetting layers. The contribution of Prof. A. W.
Neumann and coworkers to the development of the experimental
methods of contact angle and interfacial tension measurements, as
well as to the theory of the wetting phenomena, is well known and ap-
preciated by colloid scientists [8�13].

A rigorous thermodynamic description of the equilibrium of a wet-
ting drop at a solid substrate supposes that the parameters of Equa-
tion (1) such as h, j, and Dcs ¼ csa � csb could be unambiguously and
simultaneously expressed as a function of the disjoining pressure,
PðhÞ, acting in a thin liquid layer between the solid and the fluid
phase b (Figure 2). This approach was applied for the first time by
de Feijter and Vrij to the case of symmetrical circular liquid (foam)
films [14] and later on was developed and generalized to the case of
microscopic thin liquid films and layers in [15�19]. The originality
of this approach consists of constructing the liquid drop profile, z(r),
on the basis of the system of equations thats consists of the fundamen-
tal thermodynamic equation and the Gibbs-Duhem equation for the
liquid films, which leads to the equation [14, 20�22]

DXðhf Þ ¼ cabðcos h� 1Þ � j
rd

; ð2Þ

where

DXðhÞ ¼
Z1

h

PðzÞdz ð3Þ

is the interaction free energy (the interaction grand thermodynamic
potential) of a thin liquid layer of thickness h, and PðhÞ is the disjoin-
ing pressure isotherm. As has been shown in Babak [18, 19, 23], the
line tension j value and sign contain information about the shape of
the disjoining pressure isotherm PðhÞ. In its turn, the value of the
DXðhÞ may be negative, positive or zero depending on the profile of
the isotherm PðhÞ. For the simplified isotherm PðhÞ represented in
Figure 2, the value DXðhÞ is negative, which corresponds to finite con-
tact angles h. The contact angle h, being a function of DXðhf Þ, contains
the information of this integral function of the interfacial forces.

It should be pointed out that, in the frame of this approach, the
difference of interfacial tensions,

Dcs ¼ csa � csb ¼ DXðhf Þ þ cab �
j
rd

; ð4Þ
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is considered as the tension of the liquid layer (s� a� b) [24] by ana-
logy with the tension of symmetrical thin liquid films (membranes)
[25]. Remember that the modified Young Dupré equation is presented
now as

Wa ¼ cab þ csa � csb ¼ cab 1þ cos hð Þ � j
rd

; ð5Þ

where Wa is the work of adhesion of the liquid phase a to the solid sub-
strate in the fluid medium b. This work relates to the interaction
grand thermodynamic potential DXðhf Þ by the equation

Wa ¼ 2cab þ DXðhf Þ: ð6Þ

It must be pointed out that the wetting drop at a solid substrate is
principally a nonequilibrium thermodynamic system (Figure 3). In the
simplest case of a two-component system, e.g., water (component 1)
and oil (component 2), where the components are mutually nonsoluble
or poorly soluble and constitute the phases a and b, respectively, the
energy of adsorption of water molecules to a solid surface will be great-
er than that of the oil molecules. According to Rowlinson and Widom
[26], the formation of a thin layer of component 1 on the solid surface
is thermodynamically favorable and inevitable in the long time. More-
over, because of the capillary effect, the chemical potential of water
molecules inside the drop will always be greater with regard to that
of the water molecules localized in the flat layer. According to the

FIGURE 3 The system of a liquid drop with its thin wetting layer on a solid
substrate is thermodynamically unstable. The mass transfer of the drop is
realized by three possible paths: (I) dissolution (evaporation) and adsorption
(condensation), (II) interfacial diffusion or flow, and (III) hydrodynamic flow.
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Gibbs-Kelvin effect, the mass of the drop has the tendency to diminish
and disappear by transforming into a flat layer (Figure 4).

Three main paths of the mass transport from the water drop are
schematically shown in Figure 3. The first possible path (I) consists
of the dissolution (evaporation) of water molecules and in the conse-
quent adsorption (condensation) into the flat solid surface by the
mechanism of bulk diffusion. The second way (II) is interfacial dif-
fusion or interfacial flow. The third path (III) could be hydrodynamic
flow or bulk diffusion inside the water layer. The relative contribu-
tions of different paths to the rate of disappearing of the drop depend
on the characteristic times, sI, of these mechanisms, depending on the
physico-chemical parameters. In the case of insoluble components we
may neglect the first path (I) with regard to other ones. In their turns,
the times sII and sIII will decrease with decreasing contact angle, h, i.e.,
with increasing the difference between the energies of adsorption of
water and oil molecules at the solid substrate.

For the so-called thin (Newtonian) layers, the rate of hydrodynamic
and diffusion processes is very slow, and all these times si will be much
higher than the laboratory time, slab. For this reason, the drop may be
considered as being in quasi equilibrium with the thin liquid layer at
the solid surface. This corresponds to mechanical and thermal equili-
bria of the drop, excepting for the chemical equilibrium, which is not
established and justifies the application of the classical thermody-
namics to this system. Otherwise, in the case where si � slab, one must

FIGURE 4 The wetting drop, after having been diminished down to its criti-
cal volume, spontaneously transforms into a thin liquid layer (the common
black layer) having the form of a ‘‘blyn’’ (a ‘‘pancake’’) and a thickness, hcb, that
spreads over the Newtonian black layer of thickness hNb.
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apply the methods of nonequilibrium thermodynamics [27], which are
not considered in this article.

The final act of the diffusion scenario of the liquid drop disappear-
ing process is its spontaneous transformation into some thicker thin
liquid layer (the so-called common black film) after having achieved
some critical volume (Figure 4). The possibility of the formation of this
thicker layer (designated as ‘‘blyn’’ or ‘‘pancake’’ [28, 29] being in quasi
equilibrium with an already formed thin wetting layer (Newtonian
black film) was considered by us earlier [21]. In this article this mech-
anism is discussed in more detail.

The aim of this article is to give more insight into the thermody-
namics of the equilibrium of a wetting liquid drop at a solid substrate.

THE INVARIANT FOR CIRCULAR LIQUID FILMS
AND LAYERS

Consider a closed thermodynamic system (Figure 5a) consisting of a
wetting liquid drop (the phase a) in quasi equilibrium with a liquid
layer at an infinite solid surface inside a fluid medium (the phase b).
For example, this could be a sessile water drop deposited on a hydro-
philic surface (e.g., quartz, mica sheet, etc.) inside an organic liquid
(heptane, dichloromethane, etc.). Assume that the rates of the mass
transports indicated in Figure 3 are so slow that they allows us to con-
sider the system as being in mechanical and thermal equilibrium.

We must admit that the flagrant similarity exists between this sys-
tem and another thermodynamic system (Figure 5b) which is formed
by a big drop (the fluid phase b) brought into contact with a solid sub-
strate and capturing a small lenslike thickening (the dimple) of the
liquid phase a in contact with this solid surface. The thermodynamic

FIGURE 5 Scheme illustrating the similarity between the equilibrium
conditions of (a) a liquid drop and (b) a dimple (a lenslike thickening) formed
between a big fluid drop (phase b) and a solid substrate.
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equivalence between these systems is accentuated when the size of the
big fluid drop b tends to be much higher than that of the dimple
(L >> rl) and the time of the observation tends to infinity for the drop
in Figure 5a. In both cases, the liquid drop and the liquid lens form the
contact angle ho with the solid plane.

Taking into account this geometrical and thermodynamic equival-
ence between the drop and the lens, we move our attention to the lens
and consider in more detail the region adjacent to the three-phase
contact line of the lens (Figure 6a). We always assume that L >> rl,
although for the sake of commodity of the exposition this scale is not
respected in Figure 6a. The surface forces acting inside the transition
region of the lens (or the drop) may be characterized by the disjoining
pressure isotherm PðzÞ (Figure 6b). For simplicity consider only the
molecular (Van der Waals) attractive (negative) component (without
DL electrical repulsion), which is characterized by only one deep
coagulation minimum �Pmin. The thickness of the thin liquid layer
designated as hf in the general case depends on the coordinate r.
The steric repulsion due to hydration or surfactant adsorption layers
of thickness hf is responsible for the positive branch of the isotherm
PðzÞ appearing when z ! hf .

The real profile of the lens (the drop) z(r) (Figure 1a) is smooth with-
out any inflections, which could be identified as the contact line or the
contact angle. In the region distant from the transition zone inside the
lens, where the surface forces are zero, the shape of the lens is spheri-
cal of radius Rl (for simplicity we neglect the exterior gravity force, or
consider the special case Rl tg ho�ac, where ac ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dqg=ro

p
is the

characteristic capillary length (the capillary constant), Dq is the density
difference of the phases a and b, g is the gravity constant, and ro is the
interfacial (surface) tension of a free (noninteracting dividing surface).
We assume that the general curvature kol ¼ �2=Rl of the lens, as well
as the interfacial tension, ro, may be measured experimentally with a
sufficient precision. The general curvature of the lens, kol , is convention-
ally considered as negative in accordance with the chosen system of
coordinates and the definition of the slope angle, u (Figure 1a),

dz

dr
¼ � tanu: ð7Þ

In the transition zone, the general curvature of the lens,
kl ¼ k1 þ k2 ceases to be constant. The first k1 and the second k2 main
curvatures of the lens are equal, respectively, to

k1 ¼
d sinu
dr

and k2 ¼ sinu
r

: ð8Þ
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With increasing r, the second main curvature k2 always remains
positive and decreasing by its absolute value, whereas the first main
curvature, k1 changes sign from positive to negative to vanish in the
‘‘flat’’ region of the film.

The main difficulty in the thermodynamic description of the system
lens�liquid�layer is the lack of an unambiguous definition (in terms

FIGURE 6 The profile, z(r), of a liquid lens (drop) in comparison with the dis-
joining pressure isotherm. (a) The profile, z(r), of a liquid lens differs from the
experimental profile, zexp(r), which intersects the plane z ¼ 0 at r ¼ rl (the
radius of the so-called contact line) under the contact angle, ho. (b) The profile
of the disjoining pressure, PðzÞ, in the transition region of the film (for sim-
plicity, the repulsive DL component of the disjoining pressure is not con-
sidered). (c) The hydrostatic pressure inside the lens, Pl, is greater than Pa

of the exterior phase, a; the normal component of the hydrostatic pressure in-
side the liquid film, PN, is unknown (the same uncertainty exists in the case of
the precursor wetting film). One may try to present this pressure as some
monotonically decreasing function, Pf(r). (d) The disjoining pressure, PðrÞ,
inside the film is characterized by two minima and a maximum, being zero
inside the lens and in the exterior phase, a.
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of the two�dividing�surfaces convention of thin liquid films) of the
reference system and the reference hydrostatic pressure for the layer
according to the Gibbs method of excesses. This means that to make it
possible to define the disjoining pressure inside the thin liquid layer
one needs the reference phase and the reference pressure for the liquid
layer [14, 21, 30].

In the case of circular liquid layers, for example, that formed by a
big fluid drop of the phase b in contact with a flat solid surface and
in the absence of the lens (Figure 6a), the reference pressure, Pref ,
for this liquid layer is usually chosen as the constant hydrostatic
pressure, Pa, of the liquid phase a outside of the big drop from which
this liquid layer is made. So, by this convention, the disjoining press-
ure, P, inside the flat film equilibrates the difference between the
pressures Pb (inside the big drop) and Pa (outside of the big drop), ac-
cording to the well-known Derjaguin mechanical equilibrium equation
for thin liquid films and layers [25],

Pðhf Þ ¼ Pb � Pa: ð9Þ

We should point out that the hydrostatic pressure inside the liquid
layer is understood as the normal component, PN , of the hydrostatic
pressure acting on the flat dividing surface of the layer. Remember
that the tangential component, PTðzÞ, of the hydrostatic pressure in-
side the liquid layer is used to define the interfacial tension, rf , of
the liquid layer of thickness, hf [17, 22]:

rf ¼
Zhf

0

Pa � PT zð Þ½ �dzþ
Z1

hf

Pb � PT zð Þ
� �

dz: ð10Þ

However, this method cannot be applied to the case of the liquid
lens (the drop) existing in the center of the contact area of the big drop
with the solid surface. The convention that the reference pressure is
constant and equal to Pa is not productive, as it contradicts the fact
that inside the lens the hydrostatic pressure is equal to Pl, which is ob-
viously greater than the hydrostatic pressure, P‘. So, the definition of
the disjoining pressure according to Equation (9) is not valid to de-
scribe the equilibrium of the liquid layer in the vicinity of the lens.
The same problem arises for the liquid drop in equilibrium with a wet-
ting precursor film or without this film. One needs another definition
of the disjoining pressure which would be more convenient to our case.

One possible way to the thermodynamic description of the tran-
sition region of the liquid layer at the boundary with the lens has been
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suggested in Babak [21]. According to this method, the reference
pressure, Pref , which one needs to describe the equilibrium of the
liquid layer, is assumed to be not constant but varies from the minimal
value, Pa, outside of the big fluid drop to the maximal value, Pl, inside
the lens. The simplest function, Pref ðrÞ, which one can use for this
purpose, is the linear function (Figure 6c)

Pref ðrÞ � Pl þ ðr� rlÞrrPN : ð11Þ

The disjoining pressure inside the liquid layer now may be defined as

PðrÞ ¼ Pb � Pref ðrÞ ffi Pb � Pl þ ðr� rlÞrrPN ; ð12Þ

where rrPN ¼ dPN rð Þ=dr ffi Pa � Pb

� �
=ðL� rlÞ < 0 is the gradient

of the normal component of the hydrostatic pressure inside the
whole liquid layer. The component PN is understood as the local hydro-
static pressure, which acts in the liquid layer in the direction of the
normal to the dividing surface. The graphic of the disjoining pressure
PðrÞ inside the liquid layer is schematically represented in Figure 6d.

We should point out that in the case when the radius rl of the lens is
much less than the radius of the liquid layer, L, i.e., rl << L, one can
neglect the gradient rrPN that allows us to use the hydrostatic press-
ure, Pl, inside the lens (the drop) as the reference pressure for the
liquid layer,

Pref ffi Pl; ð13Þ

PðrÞ ffi Pb � Pl: ð14Þ

The real profile of the layer z(r) ¼ h(r), including the profile of the
lens itself (Figure 1a), can be described by the system of equations
[17�19], consisting of the geometrical one Equation (7); the Gibbs-
Duhem equation,

PðzÞ ¼ �@rðzÞ
@z

����
T;li;A

; ð15Þ

where rðzÞ is the interfacial tension of the liquid layer surface; and the
mechanical equilibrium equation

rðzÞ d sinuðzÞ
dr

þ sinuðzÞ
r

� �
�PðzÞ cosuðzÞ � DPf ðrÞ ¼ 0; ð16Þ

where

DPf ðrÞ ¼ Pref ðrÞ � Pb: ð17Þ
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In spite of the ambiguity of the definition of the reference pressure
inside the liquid layer, it seems possible to draw some conclusions con-
cerning the profile z(r) of the lens in the transition region of the liquid
layer. Let us simplify the equilibrium Equation (16) in different
characteristic regions of the lens�layer system.

Relatively far away from the lens the liquid layer is almost flat and
has the local contact angle u ffi 0. This allows us to neglect the first
term in Equation (16) and to put cosu ffi 1,

PðzÞ þ DPf ðrÞ ¼ 0: ð18Þ

This means that in the vicinity of the lens the disjoining pressure
inside the liquid layer is negative, while DPf ðrÞ ffi Pl � Pb > 0 and
(Figure 6d).

P ¼ Pb � Pl < 0: ð19Þ

Remember that the negative sign for the disjoining pressure denotes
mutual attraction of the dividing surfaces in the layer.

On the other hand, in the bulk of the lens the disjoining pressure
becomes, obviously, zero, the interfacial tension acquires its constant
value ro, and the reference pressure is equal to Pl. The mechanical
equilibrium Equation (16) in this region acquires the form

ro
d sinuðzÞ

d r
þ sinuðzÞ

r

� �
� DPl ¼ 0; ð20Þ

where

DPl ¼ Pl � Pb: ð21Þ

We point out that the experimental profile, zexpðrÞ, of the lens is
measured by shadow or light interference techniques [31�33] using
the portion of the lens shape of the constant general curvature, kol ,
which is situated far away from the transition region. On account of
the relatively small thickness, d, of this transition zone (which is of
the order of the correlation length for the molecular forces, i.e.,
d � 10nm << k=4), it is impossible to determine with sufficient pre-
cision the shape of the real profile in this transition region of the lens
(or of the drop). On account of this difficulty, it is convenient to
extrapolate the experimental profile, zexpðrÞ, to the transition region
without taking into account the attractive surface forces (i.e., by
making this profile insensitive to the disjoining pressure). Using this
procedure, the extrapolated experimental profile, zexpðrÞ, intersects
the solid plane z ¼ 0 at the contact r ¼ rl (which is considered as the
radius of the lens) under the contact angle ho. We point out that the
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radius of the contact line may be defined as the intersection between
the extrapolated experimental profile, zexpðrÞ, and the plane z ¼ hf : in
this convention another contact angle, hf , must be taken into consi-
deration, which differs from the contact angle ho. The first definition
of the contact line and the contact angle refers to the so-called mem-
brane approach of the liquid film [25], whereas the second definition
is known as the two interacting dividing surfaces model of the film [21].

Integrating the equilibrium Equation (20) of the experimental pro-
file zexpðrÞ within the limits z� and some variable z, one obtains

ro cosuexpðzÞ � DPlzexp �
Zz�

z

ro sinuexp

r
d zexp ¼ ro cosu

� � DPlz
�; ð22Þ

where the right side of the equation is constant for the fixed location of
the point A on the experimental profile zexpðrÞ. Applying the same pro-
cedure of the integration to the equilibrium equation relating to the
real profile Equation (16), one obtains

r cosuðzÞ þ
Zz�

z

DPf ðrÞdz� DPlz
�

2
4

3
5�

Zz�

z

r sinu
r

d z ¼ ro cosu
� � DPlz

�:

ð23Þ

The obtained result is based on Equation (7) dz ¼ � tanudr, the
Gibbs-Duhem Equation (15) written in the form dr ¼ �Pdz, and the
following obvious relationship:

Zz�

z

rðzÞd sinuðzÞ
dr

d z�
Zz�

z

P cosudz ¼
Zz�

z

rðzÞd cosuþ
Zz�

z

cosudr

¼ r cosuðzÞ:

While the left sides of Equations (22) and (23) are equal to the same
value ro cosu� � DPlz

�, one can write the general equation,

r cosuðzÞ þ
Zz�

z

DPf ðrÞdz� DPlz
�

2
4

3
5�

Zz�

z

r sinu
r

dz

¼ ro cosuexpðzÞ � DPlzexp �
Zz�

z

ro sinuexp

r
d zexp; ð24Þ

which is independent on the choice of the variable z.
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The difference inside the brackets in the left side of Equation (24)
may be expressed in the approximate form. Expanding DPf ðrÞ in series,

DPf ðrÞ ffiDPlþ 1
2 dDPf ðrÞ=dr
� �

ðr� rlÞþ � � � ; one can write
R z�

z DPf ðrÞdz�
h

DPlz
�� ffi �DPlzþ 1

2

R1
z dDPf ðrÞ=dr
� �

ðr� rlÞdzþ �� � ; which allows us to

rewrite Equation (24) as

rcosuðzÞ�DPlzþ IðrÞ�
Zz�

z

rsinu
r

dz

¼ ro cosuexpðzÞ�DPlzexp�
Zz�

z

ro sinuexp

r
dzexp; ð25Þ

where I(r) may be expressed in the approximate form

IðrÞ ffi�1

2

Z1

z

r� rlð ÞtgudDPf ffi�1

2

Z1

z

DhfdDPf ; ð26Þ

where Dhf is a very small variation of the thickness of the liquid film in
its flat region, and the upper limit,1, is justified by the fact that DPf ðrÞ
is constant in the bulk of the lens.

Now we can use Equation (25) to obtain the fundamental relation-
ships of thin liquid layer thermodynamics. Consider once more the
profile of the lens in the vicinity of the contact line (Figure 7a). The
experimental profile zexpðrÞ intersects the plane z ¼ 0 at the radius rl
under the contact angle ho, whereas with the plane z ¼ hf this profile
forms the contact angle hf at rf . Remember [23] that the contact line
with the radius rl is used in the membrane model of liquid films
(Figure 7b). In the convention of the layer with a finite thickness
one uses the contact line with the radius rf (Figure 7c).

MEMBRANE MODEL OF THE FILM

In the range of this convention, the liquid film is imagined as a
membrane of zero thickness (Figure 7b). In accordance with this pres-
entation, and taking into account that the experimental profile, zexpðrÞ,
intersects the membrane at rl under the angle ho, let us make the
following substitutions in the right side of Equation (25): zexp ¼ 0;
uexp ¼ ho; and r ¼ rl. The real profile, z(r), transforms smoothly to
the flat plane at z ¼ hf, which allows us to put the following values
in the right side of Equation (25): z ¼ hf ;u ¼ 0, and r ¼ r�, where
r� >> rl is situated somewhere in the flat region of the film far away
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from the meniscus. The interfacial tension of the film with the thick-
ness hf is denoted as rðhf Þ ¼ rf . These substitutions lead to the ex-
pression

rf � DPlhf þ IðrÞ �
Z1

hf

r sinu
r

dz

¼ ro cos ho �
Z1

hf

ro sinuexp

r
dzexp:

Neglecting the term Iðr�Þ on account of the condition d << 1 (see
Equation (26)), one can finally write

rf � DPlhf �
�

rl
¼ ro cos ho; ð27Þ

where æ is the so-called line tension in the membrane convention
[34, 35] defined as [17�19, 23]

�

rl
¼

Z1

hf

r sinu
r

dz�
Z1

0

ro sinuexp

r
dzexp: ð28Þ

FIGURE 7 (a) The presentation of the three-phase contact region, (b) in
the membrane model of the film, and (c) in the layer of the finite thickness
convention.
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In the membrane convention of the film one uses the notion of
the membrane (film) tension, cf , which differs from the interfacial
tension, rf :

cf ¼ rf � DPlhf : ð29Þ

This transforms Equation (27) into

cf �
�

rl
¼ ro cos ho: ð30Þ

Believing that the membrane tension could be presented as the
difference

cf ¼ rsa � rsb; ð31Þ

where rsa and rsb are interfacial tensions at the boundaries (solid phase
a) and (solid phase b), respectively, and ro ¼ rab, one may present
Equation (30) in the more habitual form of the Young equation,

rsa � rsb �
�

rl
¼ ro cos ho: ð32Þ

FINITE THICKNESS LAYER MODEL

This model of the film may be used when the film thickness, hf, is a
measurable parameter (Figure 7c). Because the experimental profile
zexpðrÞ intersects the plane z ¼ hf at r ¼ rf under the contact angle
hf , one makes the following substitutions in the right side of Equation
(25): zexp ¼ hf ; uexp ¼ hr, and r ¼ rf . The substitutions concerning the
real profile remain the same as has been made previously:
z ¼ hf ;u ¼ 0, and rðhf Þ ¼ rf . One obtains the expression

rf � DPlhf �
Z1

hf

r sinu
r

dz ¼ ro cos hf � DPlhf �
Z1

hf

ro sinuexp

r
dzexp;

which may be finally rewritten in the form

rf �
s
rf

¼ ro cos hf ; ð33Þ

where s is the so-called line tension in the finite thickness layer con-
vention of the film defined as [14, 17�19, 23]

s
rf

¼
Z1

hf

r sinu
r

dz�
Z1

hf

ro sinuexp

r
dzexp: ð34Þ
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Using the definition of the interaction free energy (the grand thermo-
dynamic potential) for the plane-parallel liquid film (layer) of thick-
ness hf [18],

DXðhf Þ ¼
Z1

hf

PðzÞdz ¼ rf � ro;

one can rewrite Equation (23) in the usual form [14, 17�19, 23],

DXðhf Þ �
s
rf

¼ roðcos ho � 1Þ:

LINE TENSION

Equations (29) and (33) are used to determine the line tenstion, � or s,
from the experimental dependence of the contact angle, ho or hf , of the
lens (or drop) radius, rl or rf , on a solid or a liquid support [18, 19]. In
these measurements it is usually assumed that the tensions, cf or rf ,
stay constant when the size of the drop or the lens is changed, and
the Equations (29) and (33) are used in the form

cos ho ¼ cos hoð1Þ � �

rorl
; ð35Þ

cos hf ¼ cos hf ð1Þ � s
rorf

; ð36Þ

where hoð1Þ and hf ð1Þ are the contact angles corresponding to the
limits rl ! 1ðor rf ! 1Þ:

If one takes into account that, for example, the film tension could
vary when the size of the lens or of the drop varies, then the more gen-
eral equation must be written instead of Equation (35):

cos ho ¼ cos hoð1Þ � �

rorl
þ Dcf ðrlÞ; ð37Þ

where Dcf ðrlÞ ¼ cf ðrlÞ � cf ð1Þ, and allowance should be made for the
dependence cf ðr‘Þ, which is not previously known.

We note that according to the generalized theory [18, 19] of the line
tension, the value of � can only be negative for systems characterized
by finite values of the contact angle. Numerical estimates of the line
tension as a function of the physico-chemical parameters (shape of
the profile of the disjoining pressure isotherm, contact angle value,
capillary pressure, and film size) have been recently reviewed [18, 19].
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STABILITY OF THE LENS (THE DROP) ON A SOLID
SUPPORT

Imagine a lens or a drop formed on a solid substrate and surrounded
by a thin liquid layer (Figure 8a). In the process of the ageing of the
drop, when its mass gradually decreases by a different mechanism,
which was discussed in the introduction (Figure 3), the hydrostatic
pressure inside the drop Pl gradually increases as well. The figurative
point a in Figure 8b represents the initial moment when the drop
is large (position 1 in Figure 8a). This position of the figurative point
a corresponds to the difference of the hydrostatic pressure
DPl ¼ Pl � Pb. This hydrostatic pressure difference, DPl, is smaller
than the absolute value of the attractive disjoining pressure
�Pmin; i:e:; jPminj >> DPl. The latter inequality is the condition of
the stability of the lens (the drop) on the solid substrate and of the
existence of the finite contact angle ho.

With decreasing lens (the drop) size (position 2 in Figure 8a), the
figurative point amoves to the left because of increasing the difference
DPl ¼ Pl � Pb up to the moment (position 3 in Figure 8a) when DPl ¼
jPminj. At this moment which corresponds to the so-called wetting�
spreading transfer, the drop becomes unstable, spreading as amore thick
film (e.g., a common black film) over the solid substrate surface. The
contact angle becomes smaller, corresponding to the equilibrium
between the drop and the common black film. Finally, the liquid
phase of the drop may transform wholly to the layer (position 4 in
Figure 8a and Figure 4).

FIGURE 8 (a) Evolution of the drop on a solid substrate, (b) with regard to
the disjoining pressure isotherm (for explanation see the text).
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The critical radius, r�l , which corresponds to the instability of the
lens (the drop), may be estimated by taking into account that at this
moment the capillary pressure, 2ro=R ¼ 2ro sin ho=r�l , reaches the
maximum value, jPminj, i.e.,

r�l ¼
2ro sin ho
Pmax

: ð38Þ

CONCLUSION

The thermodynamics of interacting curved interfaces (i.e., the thermo-
dynamics of the transition region of liquid films) [17, 20�22, 31] is a
self-consistent and closed system of concepts and equations relating
the disjoining pressure to other thermodynamic parameters and func-
tions. This thermodynamics may be considered as the generalization
of both the thermodynamics of plane-parallel thin liquid films and
the thermodynamics of noninteracting curved interfaces in the appro-
priate region of definition.

This thermodynamics is applied to the case of a liquid lens or a drop
wetting the solid substrate and forming a finite contact angle with it.
The analytical expressions relating the contact angles to the thermo-
dynamic parameters and the line tension for both the membrane
and the finite thickness layer models have been obtained. The cri-
terion of the stability of a liquid drop on a solid substrate has been for-
mulated [21]. The latter criterion explains the transfer from the
wetting to the spreading of a drop over the solid surface by the inter-
play between the capillary pressure inside the drop and the disjoining
pressure shape.
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